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We propose a Lagrangian for the P(4) theory of gravitation and electromagnet- 
ism which is a straightforward generalization of the Einstein Lagrangian. A con- 
strained Palatini variation of this Lagrangian yields the geometrical Einstein- 
Maxwell affine field equations. We show that these results can be extended easily 
to include both electric and magnetic charges. Finally, we consider conservation 
laws arising from the invariance properties of the Lagrangian. 

1. INTRODUCTION 

The P(4) = O(1, 3) |  theory of  gravitation and electromagnetism 
(Norris, 1985, 1991 ; Kheyfets and Norris, 1988) provides a complete geome- 
trization of  the source-free Einstein-Maxwell field equations by the identifi- 
cation of  the Maxwell field strength tensor with the R 4. part of  a P(4) 
generalized affine connection (Kobayashi and Nomizu, 1963), thus placing 
it on the same geometrical level as the Riemannian linear connection. Until 
now, however, no variational principle has been found which yields the 
geometrical Einstein-MaxweU affine field equations. In this paper we present 
a Lagrangian whose variation produces these field equations. We shall also 
address certain questions which have remained concerning the translational 
gauge covariance of  these equations. 

We begin in Section 2 by giving a brief overview of  the P(4) theory. 
For  a more complete description of  the details the reader is referred to earlier 
work (Norris, 1985; Kheyfets and Norris, 1988). The bundle structure is 
described with particular emphasis on how basic quantities transform under 
translational gauge changes. We use the translational degrees of  freedom to 
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model the 4-momentum spaces of  charged particles as four-dimensional 
affine spaces and are led to the geometrization of  charged particle trajectories 
as affine 4-momentum geodesics. In the process we identify the I~ 4. part of  
the P(4) generalized affine connection, in a particular translational gauge, 
with the negative of  the Maxwell field strength tensor. It is this identification 
which enables us to geometrize the coupled Einstein-Maxwell equations. 

The variational technique that we shall employ will be of  the constrained 
Palatini type. In Section 3 we briefly review this widely applicable technique 
that in a sense yields a maximal amount  of information, since it reveals the 
generalized forces of  constraint. In Section 4 we introduce our Lagrangian 
and argue that it is a straightforward generalization of  the Einstein Lagrang- 
ian of  general relativity. We then show that the Lagrangian is invariant 
under translational gauge transformations, and, up to a total divergence, 
the Lagrangian is invariant under classical gauge transformations of  the 
vector potential as well. Finally, the variation of  the Lagrangian yields 
the source-free Einstein-Maxwell affine field equations while maintaining 
Riemannian linear geometry. 

In Section 5 we consider the extension of  our results to include electric 
and magnetic sources. The latter is accomplished by the introduction of  a 
magnetic vector potential. In Section 6 we examine the conservation laws 
which arise from the invariance properties of  the P(4) Lagrangian. Section 
7 includes a summary of  our results and a discussion of  their implications. 

2. T H E  P(4) THEORY OF E L E C T R O M A G N E T I S M  AND GRAVITY 

The geometrical arena of  the P(4) theory of  gravitation and electromag- 
netism is the modified affine frame bundle, A M  over a four-dimensional 
spacetime manifold M. Elements of  A M  are triples (p, el, t ) ,  where pEM,  
(ei) is a linear frame at p, and ~ is an affine cotangent vector, the "origin" 
of  the frame at p. This modification 3 is necessary because we wish to model 
the 4-momentum spaces of  charged particles as affine spaces 4 and the 4- 
momentum is fundamentally a covector rather than a vector. The structure 
group of  A M  is the affine group A ( 4 ) = G I ( 4 ) ~  4. with group 
multiplication 

(A, ,  ~,) . (A2, ~2)=(A,A2, ~, " A2+ ~2) 

for all (AI, ~,), (A2, ~2)~A(4) (Norris, 1991). Since .4M is bundle iso- 
morphic to AM, the standard affine frame bundle, we shall simplify the 

3Ordinarily, the affine frame bundle A M is the set of triples (p, ej, i), where i is an affine tangent 
vector. The structure group of this bundle is A(4) = GI (4)| 4 (Kobayashi and Nomizu, 1963). 

4An affine space (Dodson and Poston, 1977) is a triple (S, V, ~), where S is a set, V a vector 
space, and ~: S x S ~ V such that, for .~, )~. te S, (I) ~(.~, P) + 6( P, t) = ~(2, t) and (2) for all 
~ S ,  the map 6~0 ~) = ~(P, 2) is a bijection. TM 
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terminology and notation by referring to .~M as the affine frame bundle of 
M and denote it by A M .  Moreover, we will denote by P(4) the Poincar6 
subgroup O(1, 3)| 4. of  A(4). 

A M  is a principal fiber bundle over L M  with standard fiber •4.. We 
shall refer to sections of A M  over L M  as translational gauges. A transla- 
tional gauge can be thought of, therefore, as a choice of origin for local 4- 
momentum affine frames on M. It can be shown that translational gauges 
are in one-to-one correspondence with covector fields on M (Norris, 1991). 

A generalized affine connection on A M  can always be specified (Kobay- 
asbi and Nomizu, 1963) by a pair (F, ~K) on spacetime, where F is a linear 
connection and fK is a covariant vector-valued one-form, where the left 
superscript indicates that K is represented in the ~ translational gauge. If  the 
linear connection is Riemannian, then the pair is said to represent a P(4) 
connection. Furthermore, the pair ({- }g, tK)  may be used to construct the 
pair (R, ~ )  where R is the Riemannian curvature and ~ is a covariant 
vector-valued 2-form on spacetime, the affine or ~4. curvature. Its compo- 
nents are defined by 5 

~ @ ~k ~r e Kkj;, -- l Kk~ ;j (2.1) 

Under a translational gauge transformation, f ~ ~ =  f@~, the N4. connec- 
tion transforms as  6 

t*gK,j = ~K~t + s;; i (2.2) 

and therefore, under the same transformation, we have 

~ * ~ j k  = t~ijk -- R i f  & (2.3) 

If  we define the contraction 

tfI~ide--~fgjk(tf~ijk) (2.4) 

then we obtain for it, from equation (2.3), the transformation law 

t~(I)i = ~ @e- R/sj  (2.5) 

Physically, we shall model the local 4-momentum spaces of classical 
charged particles as four-dimensional affine spaces (Norris, 1985). In such 
a space the observed 4-momentum must always be expressed relative to 
some local zero ofaf f ine  4-momentum. By this we mean that the observed 4- 
momentum is a vector off, such that z~ = 6 @~ z~, where ~ is the affine 4- 
momentum and ~ is the local zero (i.e., reference) of affine 4-momentum. 
We assume that there exists a translational gauge 0 such that, at a point 

5For a linear connection with torsion t@~k%r tKkj:~-tKk~:j+ So~" IK,,,k, where S~j k= FI01 k. 
~I'he notation ,~ =fi~)~ means that g= 6(9, .~) = 3~(p). 
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along its trajectory in a nonzero electromagnetic field, the observed 4- 
momentum of the charged particle is the same as that of an instantaneously 
comoving and freely falling uncharged particle. In other words, ~=0@fi ,  
where t~ is the 4-momentum per unit mass of  the uncharged reference particle. 
We call 0 the zero translation gauge (Norris, 1985). 

In order to transport the local zero of  4-momentum, defined at any 
single event in spacetime, to other events in spacetime, we must utilize an 
affine transport law based on the affine covariant derivative constructed from 
the pair ({- }g, fK). If  z~ is the affine 4-momentum of thecharged particle, 
then we say z~ is affinely parallel along the trajectory iff D~/Ds  = 0, where 
D/Ds is the affine directional covariant derivative along the path. Written 
in the zero translational gauge, this definition becomes 

(D;r (2.6) 
\ Ds / Ds 

where D/Ds is the linear directional covariant derivative and s is the charge- 
to-mass ratio of  the particle. In order to be compatible with Riemannian 
geometry, it can be shown (Norris, 1985), using the fact that (d/ds)[fi. fi] = 

0 0 0, that "Kcu ) = 0. Consequently, if we identify K with the negative of the 
electromagnetic field strength tensor, we obtain the equation 

Du j 
- - -  sUku ~ = 0 
Ds 

Thus, in the P(4) theory the Lorentz force law arises as an affine 4-momentum 
geodesic. 

Based on the above identification, we may write the Einstein-Maxwell 
equations in terms of  P(4) quantities as (Norris, 1985) 

~ = 0 (2.7) 

~t0kj = 0 (2.8) 

, _ 0 . .  o . . ~  I ~ . .  o . . . . .  ( 2 . 9 )  R ~ - ~ g ~ R -  t~i~ ~j -~gu ~,~, ~ 

The question that we address here is the following: can these equations be 
obtained from a P(4) variational principle? The difficulty that one encounters 
in constructing a Lagrangian for this theory is that the unusual inhomogene- 
ous gauge transformation laws of the affine quantities necessitate special 
care in the construction of such a Lagrangian, such that it is translationally 
gauge invariant. Our approach will also resolve the apparent problem that 
the left-hand side of  equation (2.9) is translationally invariant, while the 
right-hand side appears not to be invariant. 
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3. THE PALATINI VARIATION 

The variational technique that we employ in this paper will be of the 
constrained Palat ini  type. Exactly what we mean by this and our reasons for 
using this approach will be clarified by an examination of the more custom- 
ary variational techniques, the Hilbert variation and the traditional or 
unconstrained Palatini variation (Lanczos, 1957; Ray, 1974; Safko and 
Elston, 1976). 

We recall that historically these variational techniques were first applied 
to the Einstein Lagrangian of general relativity 

L = ( - g )  i/Zg~R o. (3.1) 

In the Hilbert variation, it is assumed that the linear connection is Riemann- 
ian and that the Lagrangian is a function of the metric tensor and its deriva- 
tives only. The variation then yields 

6 L  = ( - g ) ' / 2 ( R i j - � 8 9  6g~ (3.2) 

It is noteworthy that all second derivatives of the metric can be eliminated in 
the Einstein Lagrangian by adding a total four-divergence to the Lagrangian. 
Furthermore, the Einstein Lagrangian is unique in the sense that it is the 
only Lagrangian which can be constructed of the 14 independent curvature 
invariants which leads to field equations of first or second order (Lanczos, 
1957; Safko and Elston, 1976). 

In the traditional version of the Palatini variation, on the other hand, 
the metric tensor and the linear connection are considered to be independent 
variables, and the linear connection is assumed to be symmetric but is other- 
wise arbitrary. In this case the variation yields 

~ L = ( - g ) J / 2 [ ( R o - l g o . R  ) 8giJ + ii (g ;k+�89 / i,, - ,  ,.~ +,,, , 6r~]  (3.3) o k g  ; , . ~ '~okg  ;,n) 

and the variation of the linear connection leads easily to 

gO'.k = 0 (3.4) 

Thus, the variation picks the Riemannian connection out of the entire class 
of symmetric connections. It is well known that no other Lagrangian for 
general relativity has this property (Lanczos, 1957). 

An alternative view of the Palatini variation has been offered by Lanczos 
(1957), Ray (1974), and Safko and Elston (1976). In their view, the Palatini 
variation of the Einstein Lagrangian is a special case of a constrained Lag- 
rangian in 'which the Lagrange multiplier is found to be identically zero. 
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Specifically, the usual Einstein Lagrangian is replaced by 

- - /  _ ~ l / 2 r _ O ~  + p  Ot F k fk~ L - t - g !  tgr ,0  k't o - ' t 0 ~ ) ]  (3.5) 

where the Pk ~ are Lagrange multipliers, F ~  are the components of an arbi- 
trary symmetric connection, and {~} are the Christoffel symbols, which are 
understood to be expressed explicitly as a function of  the metric tensor and 
its derivatives. Note that the constraint term is invariant under coordinate 
transformations because it involves the difference between two linear connec- 
tions, which is a tensor. Variation with respect to the linear connection now 
gives 

~L 

ar,  
r , ,I/2,,  ij - - l e j  im - - I  r i j m  - - ~  O ' , _ _ r ,  - - - t - g )  tg ;k*~okg ;,n"t'iokg ;mtl"k ) - -U (3.6) 

Since the constraint term implies t h a t  g0;k=0 , this equation reduces to 
pkO=O. 

What has been gained by this alternative point of view? For one thing, 
one is now able to generalize the Palatini technique to Lagrangians for other 
field theories (Atkins et al., 1977). For example, consider the Lagrangian in 
Minkowski space, L = FoF 0, where F U is considered to be an arbitrary skew- 
symmetric tensor. Suppose we vary this Lagrangian with respect to F. We 
obtain nothing from the variation, since 

SL /~F~=2F~  (3.7) 

However, if we constrain F to be the curl of a vector A by adding a constraint 
term to the Lagrangian, i.e., 

L = Fo.F ~ + H~ + Ai . j -  Aj.i) (3.8) 

and treat Fu, Ae, and H ~ as independent variables, we obtain the following 
equations: 

~L 
- 2F ~ + H ~ = 0 (3.9) 

6Fo 
~L 

6/40- F0+A,,j- Aj, i=0 (3.10) 

•L = _2H[ijl.j= 0 (3.11) 
6Ai 
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Equations (3.9) and (3.11) together imply that 

F~J,j = 0 (3.12) 

while equation (3.10) implies that 

Ft0.k I = 0 (3.13) 

We see then, from equation (3.12), that one-half of Maxweil's equations 
arises as a generalized force of constraint. In this formulation, of course, we 
could have obtained the same field equations by building the constraint into 
the Lagrangian, but by doing so we lose the possibility of a deeper view into 
the structure of the theory. This is completely analogous to the fact that when 
constraints are built into the Lagrangians of simple mechanical systems, in 
general some information (i.e., the forces of constraint) is lost in the process. 
In the case of the Einstein Lagrangian, the result P~= 0 may be interpreted 
as a statement that the generalized forces of constraint are zero (Safko and 
Elston, 1976). 

Before continuing on to develop the P(4) Lagrangian, we note that 
one can derive the Einstein Maxwell equations from a doubly constrained 
Palatini variation in the following manner. Let 

L = (-g)'/2[giJRo+�89 TF~+ P ~ ( F ~ -  {w ) + H~ Aij-Aj.,)] (3.14) 

where gO, FJ', F~, Ai, P~ and H u are all considered as independent vari- 
ables. Since the additional terms do not involve covariant derivatives, the 
variation with respect to the symmetric connection F~  still results in the 
equation Pk '7 = 0, which means that the constraint on the linear connection 
may be omitted. Meanwhile, the variations with respect to F o, H ~ and Ai 
give equations (3.9)-(3.11) as before, while the variation with respect to 
g~ yields the Einstein equation 

~L I /2  1 k 1 mn t~gO=(-g) (Ro--~g~R-F~k ~ +~gqF,,,,F ) = 0  (3.15) 

4. THE P(4) LAGRANGIAN 

In previous investigations (Norris, 1985, 1991; Kheyfets and Norris, 
1988) it has been observed that a strong structural similarity exists between 
the theory of general relativity and the ira. gauge theory of electromagnet- 
ism. This suggests that the vector potential plays a role in the [R ~* theory 
similar to the role the metric plays in general relativity. In particular, it 
has been noted that there exists a special •4. connection, which in the 0 
translational gauge may be written as ~ and that this connection is 
constructed from derivatives of the vector potential in a manner analogous 
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to the way that the special connection F = {. }g in general relativity is built 
from derivatives of the metric. This suggests that in Minkowski spacetime 
the R 4. Lagrangian which is most closely analogous to the Einstein Lagrang- 
ian (3.1) is L =  A i ~ since this is the "metric-like" quantity summed on a 
contraction of the R 4. curvature. Note from equation (2.5) that in Minkow- 
ski space this Lagrangian is l~ 4. invariant, since Ru=0. Furthermore, we 
now show that, to within a total divergence, it is proportional to the standard 
electromagnetic Lagrangian. From equation (2.1) we find that 

o ~ i = _gjk O Kki ; j (4.1) 

where we have used the fact that ~ 0. Consequently, 

(_g) l/2L2 = ( _g) U2( _Ai gjk OKkij ) 

= --((--g)l/ZAigJk OKki)j+ (--g)J/2Ai;k OKki 

Since ~ the second term may be written as --�89 and 
hence we have proved our assertion. 

We now generalize this Lagrangian to curved spacetimes. We propose 
the Lagrangian 

L= (-g)U2(Li + L2 + L3 + L4) (4.2) 

where 

where H ~ and L '~ are 
definitions 

and 

L, = gaR,~(F) (4.3) 

L2 = A i ( ~ i -  ~Pi) (4.4) 

L3=Hu(Pa+ A j j - A , j )  (4.5) 

L4 = LiJ(t Ri i -  ti;j) (4.6) 

sets of Lagrange multipliers. Here, we use the 

~ r  ~(6, ~) (4.7) 

Po~rfKo-~F;~/= OKo (4.8) 

Before proceeding, we make the following comments concerning the 
P(4) Lagrangian and the variables from which it is constructed: 

1. Regarding the physical interpretation of equation (4.7), recall that 
in Section 2 we identified the 0 translational gauge as the gauge in which the 
observed 4-momentum of a charged particle moving in a nonzero electro- 
magnetic field is instantaneously the same as that of a comoving, freely 
falling, uncharged particle. By means of equation (4.7), we have modeled 
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the 4-momentum affine frame (p, ei(p), i(p)) at peM, with the triple 
(p, ei(p), 7(p)), where the cotangent vector field ?is defined as above (Norris, 
1985; Kheyfets and Norris, 1988). 

2. The ~4. connection e/~ is a flat ~4, connection in the sense that 
there exists a translational gauge in which the connection is identically zero. 
In this case, that particular gauge is the 0 gauge, as can be seen by examina- 
tion of the constraint term L4 and equation (2.2). The contracted ~4, curva- 
ture t~); is constructed from eg o and is therefore also flat. Note, from 
equations (2.1) and (2.5), that ~ Physically, it appears that the flat 
R 4. connection f/~ is related to the motion of the observer. In this case, as 
a consequence of our definition of the zero translation gauge, the observer 
is inertial. On the other hand, by demanding that ~/~-=0 instead (and 
consequently, o/~u=-uj;~), where ~= 0@fi and ~ is the 4-velocity of a field 
of noninertial observers, preliminary results indicate that one may be able 
to obtain the equations of motion from the point of view of a noninertial 
observer. We shall return to this point in future publications. 

3. The total Lagrangian is translationally invariant, as can be seen by 
the examination of the individual terms. L~ contains no quantities with affine 
transformation laws, hence it is invariant under translations. L2 and L3 
involve the difference between contracted affine curvatures and affine connec- 
tions, respectively, and consequently the inhomogeneous transformation 
terms are canceled out in both L2 and L3. One can show L4 to be invariant 
by examination of equations (2.2) and (4.7). Also note that the difference 
tensor P,7 is translationally invariant. 

4. The covector field A~ is not to be thought of, at this point in our 
development, as the electromagnetic vector potential. Rather, it is simply a 
covector field on M which is coupled linearly to tO~ and as such, it does not 
appear to have the classical gauge freedom embodied by the transformation 
A~ ~.~i=Ai+fi. We shall later show that due to the antisymmetry of the 
difference tensor Po, Ae does acquire this gauge freedom. 

5. As before, the linear connection F~ in L~ is symmetric but otherwise 
arbitrary. We have not, however, included terms in the total Lagrangian 
which constrain the connection to be metric, as we did in equations (3.5) 
and (3.14), since the inclusion of such terms again results in the Lagrange 
multipliers being identically zero. 

Before proceeding with the variation, we shall remove a total 4-diverg- 
ence from the term L2, as we did above in the case of Minkowski spacetime. 
Writing ~O~ and ~)t in terms of covariant derivatives of ~K o. and ~/~0', respec- 
tively, we find that 

L2 = (4-divergence) + Q~JPje (4.9) 
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where 

Qo ~r A i J _  g~A k ;k (4.10) 

Therefore, we shall replace L2 by 

L'2 = QJ'Po (4.11) 

in the total Lagrangian. 
Since P(,~)= 0, it is clear that only the antisymmetric part of Q~ enters 

into the contraction. L~, therefore, reduces to the usual electromagnetic 
Lagrangian, quadratic in the field strength, and it is therefore invariant to 
classical gauge transformations. Note that we have not destroyed transla- 
tional invariance in the process because, as before, the tensor Pj;= fKj~- t~  
is the difference between two ~4, connections. 

We now vary the Lagrangian L = (-g)1/2( L~ + L '2 + L3 + L4) with respect 
to the variables go, F~, At, eK U, H ~j, and L u and their derivatives. We obtain 
as a result the following equations: 

1 8L  
- Ri j -  �89 + PikA k j + PkiAj ;k + pkkA U;J) (_g)  i/2 8g~j 

k 1 k m  __ + P(joA ;k-- ~goQ P,~k-- 0 (4.12) 

1 ~ L  

(__g)l/2 r 
PJ~;Fgikp+.;k--gik;kP/--2HUil;j=O (4.13) 

1 ~ L  
fit--K,~ -- Q j;+ HU = 0 (-g) 1/2 (4.14) 

1 8 L  
8 Hii--- P# + ./lj, i -  Ai,j = 0 (_g) l/2 (4.15) 

1 8 L  
- -  t K ,  O. - t i ; j  = 0 (_g)U2 8L O 

(4.16) 

1 8L  
0 _ 8(kJg0,-,,,+ P(O3Ak ~---g ;k (_g) 1/2 a r~  

-[- emmgij/ilc + Q (JOtk + n(O3lk = 0 (4.17) 
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From equation (4.15) we obtain the identification of  P =  OK as the curl 
of  A and thereby the antisymmetry of  P. When this and the definition of  H 'J 
obtained from equation (4.14) are combined with equation (4.9) we obtain 

I r., r ~ k  I ~ ~ m n _ _ O , 1  0 - - k  I O O K m n  R~/-  igoR = l'ikl-" j - -  ~ g i j l " m n l "  - -  r~j ~j - ~gu K,,, (4.18) 

The definition of H ~j along the antisymmetry of  Pu, when combined with 
equations (4.13) and (4.17), gives 

pij;j= OKOj = 0 

and 

(4.19) 

g~J;k = 0 (4.20) 

Equations (4.18) and (4.19) are the geometrical, source-free Einstein- 
Maxwell affine field equations, as derived from a P(4) variational principle. 
Moreover, from equation (4.20) we see that the linear connection is 
Riemannian. 

5. EXTENSION OF THE P(4) LAGRANGIAN TO 
INCLUDE S O U R C E S  

The P(4) theory can be extended easily to accommodate sources by the 
inclusion of  interaction terms (-g)~/2AiJi and - ( -g) l /2g~J~i  in the Lagrang- 
Jan. When this is done we obtain the following modifications of  equations 
(4.18) and (4.19):  

p a j =  _ j i  (5.1) 

and 

Rti - ~guR - l'ikFj - -  ~go.r,,,,r t o (5.2) 

In fact, the Lagrangian can also be modified to include magnetic charges as 
well. This is accomplished by the introduction of a second vector potential 
B ~ (Cabibbo and Ferrari, 1962). In Minkowski spacetime, we modify L2 and 
L3 as follows: 

L2 = A ~ 0r + �89 i 0r (5.3) 

and 

where we define 

L3 = H iy(p,j + Ay, i - A ~,j + e~jktB k,/) (5.4) 

% ,  ~r ta,~j (5.5) ~ t  = y  
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In addition, we may include an interaction term -BiJ i ,  where Ji represents 
the magnetic current density. As a result, we obtain the additional field 
equation 

( n  j'i -- g " J ) , j :  e / j  .j ~-~ y i  (5.6)  

Had the last interaction term been omitted, we would obtain instead the 
U(1) Bianchi identity in terms of the ~4. curvature, that is, ~  The 
inclusion of these terms in the Lagrangian does not create any difficulties 
when we generalize to curved spacetime, since the introduction of the mag- 
netic potential B ~ does not affect the compatibility of the •4. connection with 
Riemannian geometry. Recall that this compatibility condition, as stated in 
Section 2, was ~ 0. We subsequently assumed that OK was minus the 
curl of A, whereas we might have chosen a more general form for OK. It has 
been shown (Kobe, 1983) that any antisymmetric, second-rank tensor field 
which vanishes at spatial infinity can always be written as the curl of one 
vector field plus the dual of the curl of a second vector field. Consequently, 
one may observe that the modification of L3 in equation (5.4) is a natural 
choice. In addition, it is worth noting that the generalization to curved 
spacetime does not necessitate the inclusion of a difference term to 

~B �9 was accompany i "~q~* [as the case with L2=A~(tr - ~i) ] ,  since r e .  is 
already translationally invariant. 

6. CONSERVATIONLAWS ARISING FROM THE INVARIANCE 
PROPERTIES OF THE P(4) LAGRANGIAN 

As we noted in Section 4, our final Lagrangian is invariant under trans- 
lational gauge transformations. However, there are no conservation laws 
which occur as a consequence of this invariance property. This is due to the 
fact that an infinitesimal translational gauge transformation ~ e ~ ,  
where ~ is an infinitesimal, leaves the difference tensor P0 invariant. On the 
other hand, an infinitesimal gauge transformation of the A i leads to positive 
results. Once the 4-divergence is removed from the term L2, it is clear that 
the covector field A t has the gauge freedom embodied by the transformation 
A~-~ A~= A~+f  a. However, as we shall now show, the L2 term is classically 
gauge invariant up to a 4-divergence, provided the difference tensor Psi is 
antisymmetric. Consider the term introduced in L2 by the addition of  the 
gradient f J to the vector field A t, that is, 

(--g) ' /zf  'i gjk( Pkj;i- Phi;j) 

= ( _g) U2(f.ig.ik _f.jgi.~)pkj;, 

= [(_g),/2( f .igjk _ f  ,jgik) p j  .~ + (_g),/z( f . j  ;~ _ gjkf., j)Pky 
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A sufficient condition for the vanishing of the second term is that Ptkj)= 0, 
which is weaker than the condition imposed by the constraint term L3. 

The variation of the vector A i, which may now be considered as a vector 
potential, due to an infinitesimal gauge transformation A ; ~ . 4 i = A ; +  e f  't is 
given by 

~*(A~) ~rA~-A;= e f  '~ (6.1) 

Since Lj, L3, and L4 are invariant under this variation we obtain 

O-- 5*( ( -g )  * /ZL ) = ( _ g ) l / 2 0 0 i 6 , A i  = (_g) l /2  oOi( e f  s ) 

----- (E(--g) I / 2 0 0 i f ) ' i -  6(--g)  I/2 0(I)i;~c 

Since f is an arbitrary scalar field, it follows that 

~ 0 (6.2) 

which is equivalent to F ,S=  O. Note that since this result does not depend 
on the fact that ~ O, this may be considered as a "strong" conservation 
law. Similarly, an infinitesimal gauge transformation of the magnetic vector 
potential B ~ leads to a conservation law of the form tO*;;=O, which is 
equivalent to F*:~ O. We have obtained, therefore, conservation of both 
electric and magnetic charge. 

7. CONCLUSION 

The P(4) theory provides a unification of gravitation and electromagne- 
tism at the classical level through the identification of the electromagnetic 
field strength tensor with the •4, component of a P(4)= O(1, 3) |  a* gen- 
eralized affine connection on spacetime. This is a marked departure from the 
usual approach to unification, which ordinarily seeks to include electromag- 
netism within general relativity by making the field strength tensor a part of 
some generalized linear connection. 

The fundamentally new idea in the P(4) theory is to model the instanta- 
neous 4-momentum spaces of a charged particle moving through an electro- 
magnetic field as four-dimensional affine spaces. The operational meaning 
of the Lorentz force law, namely that the force experienced by a charged 
particle is to be measured relative to an instantaneously comoving inertial 
observer, leads to the identification (Norris, 1985) of a particular gauge, 
the 8 gauge, in which the I~ a* component of the full P(4) connection is 
antisymmetric. The subsequent identification of the R 4. component in this 
gauge with the negative of the electromagnetic field strength tensor leads to 
the realization of the Lorentz force law as an affine 4-momentum geodesic. 
One may then obtain from this identification the Einstein-Maxwell affine 
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field equations in terms of contractions of the O(1, 3) and R 4. curvature 
components. 

We believe that the P(4) theory has a number of advantages over other 
attempts at the classical unification of gravity and electromagnetism, among 
which are the following. First, the P(4) theory is simpler and more funda- 
mental in terms of the underlying physical concepts. Second, the O(1, 3) and 
R 4. components of the P(4) connection are placed on equal footing in the 
P(4) theory. This is in contrast to the so called "already unified" theory of 
Rainich, Misner, and Wheeler (RMW), in which the field strength tensor is 
reduced to the role of the "Maxwell square root" of the Ricci tensor 
(Rainich, 1925; Misner and Wheeler, 1957). Third, in the P(4) theory, one 
is able to obtain the Lorentz force law as an affine 4-momentum geodesic in 
a simple and natural manner. Finally, there is a remarkably close structural 
similarity between the R 4. theory of electromagnetism and general relativity. 

In this paper we have sought to complete one aspect of the P(4) theory 
by the introduction of a Lagrangian from which the Einstein-Maxwell affine 
field equations may be derived. In addition we have shown that these field 
equations transform covariantly under P(4)=O(1,  3) |  4. transforma- 
tions. The discovery of this variational principle is a further advantage of 
the P(4) theory over the RMW theory, since no satisfactory Lagrangian has 
been uncovered for the RMW theory. 

It is significant that the electromagnetic sector of our Lagrangian (L2), 
which arises from a straightforward generalization of the Einstein Lagrang- 
ian, turns out to be, to within a four-divergence, the usual Lagrangian of 
electromagnetism, quadratic in the field strength. This, it would appear, is 
another example of the successful exploitation of the structural similarities 
between R 4. electromagnetism and general relativity mentioned above. As 
we have demonstrated in Section 5, the P(4) Lagrangian can be easily 
extended to include matter currents and both electric and magnetic charges. 
The latter was achieved by the introduction of a magnetic vector potential 
which we have shown is completely consistent with P(4) geometry. Here it 
should be stressed that the R 4. component of the P(4) connection can only 
be thought of as constructed solely from these two potentials in the 0 transla- 
tional gauge. Both of these potentials acquire the classical gauge freedom of 
the vector potential and we have used the invariance of the total Lagrangian 
under classical gauge transformations of these two potentials to derive con- 
servation laws for both electric and magnetic charge. 

An interesting issue which has arisen in this paper is the physical signifi- 
cance of the fiat ~4. connection/~. As we have mentioned above, we demand 
that ~ Physically, this means that at every point along the trajectory 
of a charged particle, we choose to measure the Lorentz forced with respect 
to an instantaneously comoving inertial observer without any "noninertial 
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affine effects" arising due to the flat connection/~. It appears that an alterna- 
tive choice of observers may be implemented by a different demand on the 
fiat connection/~ as we mentioned in Section 4. If, as we have speculated, 
the flat connection is related to the motion of observers along the trajectory 
of the charged particle, then one could say that it is neither the connection 
of the pure electromagnetic field K nor the connection of the observer/C that 
is physically observable, but that it is the difference between these connec: 
tions that has physical relevance. Perhaps we may then sum up the affine 
nature of spacetime in the following way: the motion of a particle in space- 
time is not determinable apart from the motion of the observer of the particle 
and therefore the very act of observation must involve the difference between 
affine objects. This appears to be the case for at least three different classes 
of affine objects. The first of these are the points of spacetime themselves. If 
points p and q are elements in some local coordinate patch (U, x) of space- 
times, then the coordinate maps x i: U ~ ~4 can be used to construct a differ- 
ence function So: U• U ~  4 defined by So(p,q)=(xi(p)-x~(q)), thus 
making (U, ~4, So) into an affine space. This is the usual "relativity of 
events" in relativistic physics. In this sense, the relative displacement of a 
particle at point p and an observer at point q is the affine difference between 
p and q, namely S0(p, q). In the P(4) theory, these ideas have been extended 
to the 4-momentum spaces of charged particles to define a "relativity of 4- 
momentum" for classical charged particles. In this case, the observed 4- 
momentum of charged particles is the affine difference between the affine 4- 
momentum of the particle and the local zero of 4-momentum, the latter of 
which is related to the motion of observers. Finally, in our variational prin- 
ciple we have seen the electromagnetic field strength tensor appear as the 
difference between two R 4. affine connections, one of which appears to be 
related to the observer. This may also be considered as an affine difference, 
the range of the difference function being the space of second-rank tensors 
on spacetime. 
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